Assignment For Class X

Subject : Mathematics

Topic :Factorisation (Remainder and factor Theorem)

- Polynomial: An algebraic expression of the form a₀xⁿ +a₁xⁿ⁻¹ +a₂xⁿ⁻²+.....a_{n-1}x+a_n, where n is a positive integer and a₁,a₂,a₃.....a_n ER, the set of real numbers is called a polynomial in a variable x. It is denoted by f(x).
- If a polynomial is divided by a non zero polynomial , say g(x), there exist unique polynomial q(x) such that f(x) = g(x)q(x) + r(x).
- A non zero polynomial g(x) is called factor of any polynomial f(x), if there exist some polynomial q(x) such that f(x) = g(x)q(x).
- **Remainder Theorem : If** a polynomial f(x), over a set of real numbers R, is divided by (x-a), where $a \in \mathbb{R}$, the remainder is equal to f(a).

f(x)= (x-a)Q+r, Where Q = quotient and r is remainder or f(a) =r

• Factor theorem: If f(x) is a polynomial and **a** is any real number, (x-a) is a factor of f(x) if and only if f(**a**) =0 (remainder =0)

Exercise 6. Q1.ii) Find the remainder (without division) on dividing $f(x) = 2x^3 - 7x^2 + 3$ by (x-2)

Steps for finding remainder

Step 1: Equate the divisor to zero and solve the equation so obtained to get the value of variable.

Here (x-2) is the divisor. Equating x-2=0, we get x=2

Step 2: substitute the value of the variable obtained in step 1, in the given polynomial f(x) and simplify it to get required remainder.

Here Remainder =f(2) =2(2)³-7(2)² +3= 2(8) -7(4) +3= 16 -28 +3=-9 Ans

Using Exercise 6. Q.4 Using remaider theorem, , find the value of k if on dividing 2x³ +3x² -k x+5 by x-2, leaves remainder 7. (ICSE 2016)

Here (x-2) is divisor so x-2 =0 \Rightarrow x=2 Given f(2) =7, $\Rightarrow 2(2)^3 + 3(2)^2 - k(2) + 5 = 7$ $\Rightarrow 2(8) + 12 - 2k + 5 = 7$ $\Rightarrow 33 - 2k = 7$ $\Rightarrow 2k = 26$ $\Rightarrow k = 13$ Ans

Factor Theorem :

When a polynomial f(x) is divided by(x-a), the remainder is equal to f(a). If the remainder f(a) is equal to zero (0), then (x-a) is a factor of polynomial f(x)

Exercise 6,Q.11, Show that (x-2) is a factor of $3x^2 - x - 10$. Hence factorise $3x^2 - x - 10$.

Here (x-2) is divisor so x-2=0 \Rightarrow x=2 & f(x) =3x²-x-10

 \implies f(2) = 3(2)² -(2) -10 =12 -12= 0

 \therefore f(2) =0, (x-2) is factor of $3x^2 - x - 10$. (Factor theorem)

Dividing $3x^2 - x - 10$ by x-2, we get 3x+5 as quotient and remainder = 0

$$\Rightarrow (x-2)\overline{\smash{\big)}3x^2 - x - 10}$$

$$3x^2 - 6x$$

$$5x - 10$$

$$5x - 10$$

$$\overline{0+0}$$

 \Rightarrow :: 3x² -x-10 =(x-2)(3x+5)

Homework Q3. ii) Q.6i), Q.7ii)Q8,Q. 13,Q.15ii), iii, Q18,Q.24,Chapter test Q10

Note: Solutions of following questions are there in the video link provided to you by the school. Q6ii),Q7iii),Q.12,Q.15 i),iv)Q.20i)Q23 & one question from outside